Cellular redox state and endothelial dysfunction in mildly hyperhomocysteinemic cystathionine beta-synthase-deficient mice.
نویسندگان
چکیده
Previous in vitro experiments have shown that hyperhomocysteinemia leads to oxidative inactivation of nitric oxide, in part by inhibiting the expression of cellular glutathione peroxidase (GPx-1). To elucidate the role of intracellular redox status on homocysteine-induced endothelial dysfunction and oxidant stress, heterozygous cystathionine beta-synthase-deficient (CBS(-/+)) and wild-type (CBS(+/+)) mice were treated with the cysteine donor L-2-oxothiazolidine-4-carboxylic acid (OTC). CBS(-/+) mice had significantly lower GPx-1 activity compared with their CBS(+/+) littermates, and OTC treatment led to a modest increase in tissue GPx-1 activity and significant increases in total thiols and in reduced glutathione levels in both CBS(+/+) and CBS(-/+) mice. Superfusion of the mesentery with beta-methacholine or bradykinin produced dose-dependent vasodilation of mesenteric arterioles in CBS(+/+) mice and in CBS(+/+) mice treated with OTC. In contrast, mesenteric arterioles from CBS(-/+) mice manifested dose-dependent vasoconstriction in response to both agonists. OTC treatment of CBS(-/+) mice restored normal microvascular vasodilator reactivity to beta-methacholine and bradykinin. These findings demonstrate that mild hyperhomocysteinemia leads to endothelial dysfunction in association with decreased bioavailable nitric oxide. Increasing the cellular thiol and reduced glutathione pools and increasing GPx-1 activity restores endothelial function. These findings emphasize the importance of intracellular redox balance for nitric oxide bioactivity and endothelial function.
منابع مشابه
Cellular Redox State and Endothelial Dysfunction in Mildly Hyperhomocysteinemic Cystathionine -Synthase–Deficient Mice
Previous in vitro experiments have shown that hyperhomocysteinemia leads to oxidative inactivation of nitric oxide, in part by inhibiting the expression of cellular glutathione peroxidase (GPx-1). To elucidate the role of intracellular redox status on homocysteine-induced endothelial dysfunction and oxidant stress, heterozygous cystathionine -synthase–deficient (CBS ) and wild-type (CBS / ) mic...
متن کاملEndothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine beta-synthase-deficient mice.
Hyperhomocysteinemia is associated with increased risk for cardiovascular events, but it is not certain whether it is a mediator of vascular dysfunction or a marker for another risk factor. Homocysteine levels are regulated by folate bioavailability and also by the methyl donor S-adenosylmethionine (SAM) and its metabolite S-adenosylhomocysteine (SAH). We tested the hypotheses that endothelial ...
متن کاملGenetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia.
Cystathionine beta-synthase-deficient mice (Cbs(-/-)) exhibit several pathophysiological features similar to hyperhomocysteinemic patients, including endothelial dysfunction and hepatic steatosis. Heterozygous mutants (Cbs(+/-)) on the C57BL/6J background are extensively analyzed in laboratories worldwide; however, detailed analyses of Cbs(-/-) have been hampered by the fact that they rarely su...
متن کاملEndothelial Dysfunction and Elevation of S-Adenosylhomocysteine in Cystathionine b-Synthase–Deficient Mice
Hyperhomocysteinemia is associated with increased risk for cardiovascular events, but it is not certain whether it is a mediator of vascular dysfunction or a marker for another risk factor. Homocysteine levels are regulated by folate bioavailability and also by the methyl donor S-adenosylmethionine (SAM) and its metabolite S-adenosylhomocysteine (SAH). We tested the hypotheses that endothelial ...
متن کاملFolate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine beta-synthase-deficient mice.
Hyperhomocysteinemia is a risk factor for stroke, myocardial infarction, and venous thrombosis. Moderate hyperhomocysteinemia is associated with impaired endothelial function, but the mechanisms responsible for endothelial dysfunction in hyperhomocysteinemia are poorly understood. We have used genetic and dietary approaches to produce hyperhomocysteinemia in mice. Heterozygous cystathionine bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2002